Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.

نویسندگان

  • M Taillefer
  • T Rydzak
  • D B Levin
  • I J Oresnik
  • R Sparling
چکیده

Clostridium thermocellum produces ethanol as one of its major end products from direct fermentation of cellulosic biomass. Therefore, it is viewed as an attractive model for the production of biofuels via consolidated bioprocessing. However, a better understanding of the metabolic pathways, along with their putative regulation, could lead to improved strategies for increasing the production of ethanol. In the absence of an annotated pyruvate kinase in the genome, alternate means of generating pyruvate have been sought. Previous proteomic and transcriptomic work detected high levels of a malate dehydrogenase and malic enzyme, which may be used as part of a malate shunt for the generation of pyruvate from phosphoenolpyruvate. The purification and characterization of the malate dehydrogenase and malic enzyme are described in order to elucidate their putative roles in malate shunt and their potential role in C. thermocellum metabolism. The malate dehydrogenase catalyzed the reduction of oxaloacetate to malate utilizing NADH or NADPH with a kcat of 45.8 s(-1) or 14.9 s(-1), respectively, resulting in a 12-fold increase in catalytic efficiency when using NADH over NADPH. The malic enzyme displayed reversible malate decarboxylation activity with a kcat of 520.8 s(-1). The malic enzyme used NADP(+) as a cofactor along with NH4 (+) and Mn(2+) as activators. Pyrophosphate was found to be a potent inhibitor of malic enzyme activity, with a Ki of 0.036 mM. We propose a putative regulatory mechanism of the malate shunt by pyrophosphate and NH4 (+) based on the characterization of the malate dehydrogenase and malic enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum.

In Clostridium thermocellum, a thermophilic anaerobic bacterium able to rapidly ferment cellulose to ethanol, pyruvate kinase (EC 2.7.1.40) is absent based on both the genome sequence and enzymatic assays. Instead, a new pathway converting phosphoenolpyruvate to pyruvate via a three-step pathway involving phosphoenolpyruvate carboxykinase, NADH-linked malate dehydrogenase, and NADP-dependent ma...

متن کامل

Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405).

Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, ≥92% of the substrate carbon utilized could be accounted for in the pellet, s...

متن کامل

Atypical glycolysis in Clostridium thermocellum.

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphor...

متن کامل

Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.

MALATE OXIDATION IN PLANT MITOCHONDRIA PROCEEDS THROUGH THE ACTIVITIES OF TWO ENZYMES: a malate dehydrogenase and a NAD(+)-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD(+) stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyan...

متن کامل

Characterization of the L-malate permease gene (maeP) of Streptococcus bovis ATCC 15352.

A gene which was shown to be cotranscribed with the NAD+-dependent malic enzyme gene (maeE) of Streptococcus bovis ATCC 15352 was revealed to encode L-malate-specific permease (MaeP), which showed high activity at low pHs (pH 5.1 to 5.9). MaeP was strongly inhibited by the ionophores nigericin and valinomycin.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2015